
Abbreviations

Chapter 4

POInT: Modeling Polyploidy in the Era of Ubiquitous
Genomics

Gavin C. Conant

Abstract

Thirteen years ago, we described an evolutionary modeling tool that could resolve the orthology relation-
ships among the homologous genomic regions created by a whole-genome duplication. This tool, which
we subsequently named POInT (the Polyploid Orthology Inference Tool), was originally only useful for
studying a genome duplication known from bakers’ yeast and its relatives. Now, with hundreds of genome
sequences that contain the relicts of ancient polyploidy available, POInT can be used to study dozens of
different polyploidies, asking both questions about the history of individual events and about the com-
monalities and differences seen between those events. In this chapter, I give a brief history of the develop-
ment of POInT as an illustration of the interconnected nature of computational biology research. I then
further describe how POInT operates and some of the strengths and drawbacks of its structure. I close with
a few examples of discoveries we have made using it.
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1 Polyploidy and the Advent of Genomics

Very shortly after the rediscovery of Mendel’s work [1], geneticists
started to consider the role of polyploidy, the doubling (or more) of
an organism’s chromosome complement, in both genetics and
evolution [2–4]. That interest continued, such that, when the first
eukaryotic genome was released nearly a century later, it was very
quickly shown to have the remnants of an ancient polyploidy
encoded within it [5, 6].
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Due to the startlingly rapid improvements in sequencing tech-
nologies and the associated tools for assembly and genome com-
parisons [ ], there are now hundreds of available genomes from
species that underwent polyploidy at some point in their history
[ ]. For convenience, these polyploid lineages are often divided
based on their age into young neopolyploids and old paleopoly-
ploids [ ], with an intermediate category of mesopolyploids used in
some cases (e.g., [ , ]). The precise distinction between these
types arguably varies depending on the system and questions in
play; for the purposes of this chapter, the most salient feature of the
polyploidy is whether it occurred sufficiently long ago that both
duplicate gene loss and speciation events have occurred since.
Hence, unless otherwise qualified, in what follows polyploidy
should be understood to refer to meso- or paleopolyploidy events.
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These postpolyploidy gene losses are predicted by evolutionary
theory, because, in the most straightforward framework, the
genetic redundancy created by the polyploidy protects the organ-
ism from the deleterious effects of function-abolishing mutations in
one copy of the duplicate pair [12, 13], allowing that copy to be
lost through a combination of random mutation and genetic drift.
This expectation is largely empirically confirmed by the observation
that most duplicate genes are short-lived [14, 15], although it is
notable that duplicates produced by polyploidies are longer-lived
than are others [16].

2 Gene Loss, Comparative Genomics, and the Need for Models

The story of POInT begins with such duplicate losses, and I think it
is instructive to give a brief history of how it developed. I do so less
for the intrinsic interest of POInT and more as a reminder that
many analysis tools, including POInT, are natural, if unexpected,
developments of existing ideas and algorithms.

When a gene duplication of any type is shared among more
than a single species, the tools of molecular phylogenetics can be
used to model and understand its history [17]. In the special case of
a polyploidy, however, there is information beyond the gene
sequences themselves that can provide a great deal of assistance in
understanding that history: the location of the duplicates in relation
to the other genes in the genome. We can refer to groups of
homologous genes that occur in the same order in two different
genomes as being in synteny (although this conserved order is also
sometimes referred to as colinearity, with synteny used instead to
describe conserved gene content between genomes). Synteny is
also of course useful in comparative genomics more generally (see
Chen and Zwaenepoel; Berthelot et al.; in this volume; [18]), but,
as I will argue below, it is absolutely essential to understanding the
history of a paleopolyploidy event.



Modeling Polyploid Genome Evolution with POInT 79

WGD

Genome 1

Genome 2

RGL

Speciation

Ancestral genome

“pre”-WGD

Pillar 1

Pillar 2

Pillar 3

Pillar 4

Pillar 5

Fig. 1 Schematic of the evolutionary processes modeled with POInT, including gene losses and speciation
after a whole-genome duplication. Immediately after the WGD, all five genes are present in two homoeologous
copies. Three homoeologous gene losses occur prior to the split of the two species (red “X”s), one in the less
fractionated subgenome (Track “0;” yielding the green gene in the lower window) and two from the more
fractionated subgenome (Track “1;” yielding the two blue genes in the upper window). After the speciation
event, Genome 1 loses a homoeolog from the more fractionated subgenome and Genome 2 loses one from the
less fractionated subgenome, resulting in a case of reciprocal gene loss (RGL). The result is five “pillars” of
duplicated or lost duplicated genes for the two genomes. The boxed region illustrates the principle that even
polyploidies where most or all duplicates have been lost still show detectable patterns of DCS relative to a
nonpolyploid outgroup

I was introduced to this argument during my postdoctoral
work with Ken Wolfe: Ken and Kevin Byrne had just completed
the Yeast Gene Order Browser (YGOB; [19]), a manually-verified
set of homologous genes from many yeast genomes, depicted
relative to their orders on their chromosomes (http://ygob.
ucd.ie). YGOB illustrates the double-conserved synteny (DCS) pre-
served in the yeast genomes after their shared paleopolyploidy by
comparing those genomes to other yeast genomes lacking that
polyploidy (Fig. 1). A key aspect of DCS is that it is evident not
merely among the genes that survive in duplicate from the poly-
ploidy but also among those genes where one of the two duplicate
copies has been lost. In principle, with a sufficiently closely related
nonpolyploid relative, a polyploidy event could be identified using
DCS even if every single duplicate gene pair created by it had lost
one of its members (as shown in the boxed region at the extreme
right of Fig. 1).

At the time YGOB was created, yeasts were unusual in that
genome sequences for many closely related species were available,
whereas, in most other groups of eukaryotes, the sequenced gen-
omes were phylogenetically widely spaced. Using YGOB, the Wolfe
laboratory made a number of discoveries about the yeast polyploidy
and those genomes more generally. They documented the indepen-
dent loss of alternate duplicate copies in different lineages [15]:
These reciprocal gene losses (RGLs) could potentially reproductively
isolate the lineages in question from each other [20]. They also
described a biosyntentic gene cluster that had recently been “born”
in bakers’ yeast [21] and showed that the earliest phases of dupli-
cate gene losses after the yeast polyploidy had been quite
rapid [15].

http://ygob.ucd.ie
http://ygob.ucd.ie
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Fig. 2 Models of gene loss after polyploidy for a whole-genome duplication (WGD) and a whole-genome
triplication (WGT, hexaploidy). (a) WGD: All pillars start in duplicated state U (Undifferentiated), from which they
can transition to either the three other duplicated states, C1 (Converging state 1), C2 (Converging state 2) and
F (Fixed) or to the two single-copy states S1 (Single-copy 1) and S2 (Single-copy 2). We define subgenome
1 (S1) to be the preferred subgenome with more surviving gene copies: Thus, C1 and S1 are states where the
genes from the less-fractionated parental subgenome will be or are preserved, and C2 and S2 the
corresponding states for the more-fractionated parental subgenome. Duplicate fixation is inferred when
γ 6¼ 0, convergent losses when δ 6¼ 0, and biased fractionation when ε < 1.0. (b) WGT: All pillars start in
state T (Triplicated) and transition first to duplicated states (Dx,y) and hence to the single-copy states (Sx).
Subgenome 1 is assumed to be favored (fewer losses) and the identity of that subgenome inferred in the POInT
computation. Losses from the triplicated state are then increasingly disfavored first to D1,3 (parameter f1,3) and
D2,3 (parameter f2,3). There are also individual rates of loss from the duplicated to single-copy states (σx). As
described in the text, we add a formation step to this model, with the initial tetraploidy being represented with
the D2,3 state, which transitions to state T unless losses occur prior to the second allopolyploidy (parameters
β1,2, β1,3, and τ)

This last question of gene losses reminded me of work by my
undergraduate advisor, Paul Lewis, on models for the phylogenetic
analysis of nonsequence data [22]. Presented with the comparative
data in YGOB, it was not difficult to use its encoded presence/
absence data as the states of a phylogenetic model (Fig. 2).

Armed with a simple version of this model, I was able to assist
with the next project in the lab: adding a new genome to YGOB.
Ken had realized that the genomes that would be most informative
as to the history of the yeast polyploidy were not the close relatives
of bakers’ yeast but rather those like that of Vanderwaltozyma
polyspora (then known as Kluyveromyces polysporus), which had
diverged from bakers’ yeast shortly after the polyploidy.

It became clear that, because V. polyspora and bakers’ yeast
(S. cerevisiae) had diverged so soon after the polyploidy event
(Fig. 3), there was a significant challenge in inferring orthology for
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these two genomes. Orthologs, of course, are homologous genes in
different species that last shared a common ancestor at the specia-
tion of those species [23]. When two species split almost immedi-
ately after a polyploidy, the few shared duplicate gene losses that
occurred before that split will necessarily produce single-copy
orthologs in those species. However, the losses that occur after
the speciation will be independent (Fig. 1 illustrates these pro-
cesses). If we confine ourselves to the genes that are single-copy
in both genomes, these independent losses will result in effectively
equal numbers of paralogs and orthologs. We show an example of
this phenomenon in Fig. 3, where, for the region shown, more of
the single-copy genes in S. cerevisiae and V. polyspora are paralogs
(green) than are orthologs (purple).
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Fig. 3 Inferred orthologous regions from 11 species produced in the yeast WGD event: For clarity, gene names
are shown only for S. cerevisiae and V. polyspora. Pillars shown in purple are cases of single-copy orthologs
for these two species: green pillars are single-copy paralogs. Cases where either or both genomes retain
homoeologous genes are shown in tan. As discussed in the text, the confidence in the orthology estimate (Pj) is
given above each column. Because the yeast WGD has limited evidence for biased fractionation [32], the
relationships depicted are degenerate, with the swap of the bottom and top blocks having an identical
probability (hence doubling this number gives a sense of the “real” confidence). The mirrored topologies have
branch lengths scaled by POInT’s estimates of the relative number of duplicate losses (α� time with a model
without biased fractionation, i.e., ε 1.0 in Fig. 2)

Under these circumstances, the problem becomes phasing the
DCS blocks from S. cerevisiae with the orthologous block from
V. polyspora. YGOB made its orthology phasing by pairing syntenic
blocks so as to maximize the number of syntenic positions where all
of the polyploid genomes had the same gene status (e.g., present or
missing). With this approach, we estimated that about 55% of
single-copy genes in S. cerevisiae and V. polyspora are orthologs
and 45% paralogs [24].

This high degree of dissimilarity between the two genomes
raises some concerns (to be considered shortly), but we were able
to use YGOB’s inferences to fit our duplicate loss model and infer



the phylogenetic timing of the gene losses. We found that more
than 80% of the duplicate pairs produced by the WGD were still
duplicated at the split of S. cerevisiae and V. polyspora, consistent
with the observed near equality in numbers of orthologs and para-
logs. Comparing the loss rates to sequence divergence allowed us to
show that duplicate loss was rapid in the earliest postpolyploidy
period.
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3 One Polyploidy or Two?

Thus, the first “proto”-POInT analyses used orthology inferences
made heuristically. In principle, such an approach can be quite
accurate and could be thought of as analogous to multiple sequence
alignment in molecular phylogenetics, where appropriately scaled
dissimilarity penalties and hill-climbing methods are used to iden-
tify the homologous bases/residues that are then analyzed with
probabilistic models of sequence evolution [25–27]. However,
there were a few potential concerns. Firstly, could we be sure that
S. cerevisiae and V. polyspora were actually products of the same
polyploidy event? A heuristic approach will assume a common
polyploidy and produce the syntenic blocks most consistent with
that hypothesis. But how could we know that independent poly-
ploidies analyzed with such a tool might not produce a similar
55%/45% split of inferred orthologs to paralogs? The heuristic
approach would also work best for large synteny blocks, where
even those few shared prespeciation losses will overwhelm any
chance effects and give correct orthology phasing. But what is
“large” in this context and how serious are such chance effects
likely to be? Clearly what was needed is a modeling approach that
accounted for the uncertainty in the orthology phasing.

The core of this new model came from adapting an unrelated
project from my doctoral work. That project was converting the
linkage analysis package Genehunter [28, 29] to run on a super-
computer [30]. Genehunter uses the linkage analysis algorithm of
Lander and Green [31] to locate a disease-causing genetic variant in
the genome by taking a number of genetic markers from several
members of a family afflicted with that disease. The algorithm
computes the odds of the disease-causing allele being at each of a
number of points within the genetic map, given the known geno-
types for each individual at each marker and the recombination
rates between those markers. What is important about this algo-
rithm is that while the markers for each individual are known, it is
not known whether any given marker allele is derived from the
individual’s mother or father. As a result, the calculation carries
this parental uncertainty throughout the analysis, meaning that,
given n genotyped individuals, at each marker there are (essentially)
2n inheritance patterns that must be considered.
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Fig. 4 Four possible orthology relationships (i.e., subgenome assignments) for two genomes sharing a WGD,
using the track identifiers (0,1) and colors from Fig. 1, showing how different orthology assignments give rise
to different patterns of orthology and paralogy in a column. Hence, the first block depicts the correct orthology
taken from Fig. 1, while the remaining three swap subgenome assignments for one or both of the sections of
the two extant genomes. POInT computes the likelihood of each and then conditions them on pillars to the left
and right (see text)

I realized that the unknown orthology states in the polyploidy
model could be treated with the mathematics of the Lander and
Green algorithm: It was this insight that made POInT a useful tool.
The starting point is the model of duplicate loss along a phylogeny
already discussed (Fig. 2). In our original analysis, we assumed that
the orthology relationships were known and simply computed the
likelihood of the resulting loss data under the model. However, for
a given duplicated locus (pillar, Fig. 1), it is perfectly possible to
compute a likelihood for any or all possible orthology relationships
(Fig. 4). Indeed, for the special case of a duplicate pair fully pre-
served in each genome, that likelihood is the same for all possible
orthology relationships.

4 The POInT Computation

For clarity, let us first assign identifiers 0 and 1 to the two genomic
regions produced by the WGD in each of the n genomes consid-
ered (Fig. 4). These assignments are purely for bookkeeping pur-
poses: We do not assume that section “0” in one genome is
orthologous to section “0” in another. We must compute the
likelihood for a set of presence/absence data for every possible
combination of orthology relationships: For n genomes, there are
2n such relationships. POInT can make similar computations for
hexaploidies and octoploidies, but the notation is more cumber-
some, so I confine my examples here to the case of a genome
duplication/tetraploidy. We represent an orthology relationship as
a binary vector O of length n. For example, for two taxa, the four
possible values ofO are 00 (0 in decimal notation),01 (1),10 (2),
and 11 (3). The value at the gth position of the vector (0 or 1)
indicates which of the two genomic sections is assigned to the
“top” track for the gth genome, with the other assigned to the
lower track (Fig. 1). When modeling biased fractionation, the
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unequal preservation of duplicate copies from the two subgenomes,
this top track corresponds to the subgenome with more surviving
genes [32].
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The first step of the computation is, for each of the m pillars in
the dataset (the origins of which we will explain briefly in the next
section), to compute the likelihood of the presence/absence data at
that pillar under each of the 2n orthology relationships, given a
phylogeny and set of model parameters. These likelihoods are
stored in a vector L, indexed by the 2n orthology relationships in
binary format.

The insight of the Lander and Green algorithm comes in at this
point. We would like to assess if there is an orthology relationship
that has relatively high likelihood for a number of pillars. To do so,
we take advantage of the synteny relationships between neighbor-
ing pillars, if such relationships exist. We therefore design a transi-
tion probability matrix Θi�i,i that describes the synteny transition
between pillars i– 1 and pillar i. This matrix gives the probability of
orthology relationship j at pillar i given that pillar i � 1 has
orthology relationship k, where both j and k represent orthology
relationship vectors when read in binary format. The elements of
this matrix Θi�1,i

j ,k have the form:

Θi�1,i
j ,k ¼

Yn�1

l¼0

θððj^kÞ�lÞ&1
i,l � ð1� θi,lÞ1�ðððj^kÞ�lÞ&1Þ ð1Þ

where “^” represents the bit-wise exclusive-or operator, “�” the
bit-wise shift operator, and “ & ” a bit-wise and. Hence, as horrify-
ing as this equation looks, it simply implies that we consider the
genomes l ¼ [0. . .n � 1] and construct a product that uses θi,l at
positions where O j and Ok differ and (1 � θi,l) at positions where
they are the same. Here, θi,l is the probability that the orthology
assignments change between a pair of pillars for genome l. Its value,
however, differs depending on the synteny information for the two
pillars. If, between i � 1 and i, synteny is maintained in either the
upper or lower track or both, θi,l ¼ θ, a global constant estimated
from the data by maximum likelihood. Otherwise, θi,l ¼ 0.5 for
genome l, meaning position i � 1 conveys no information on the
orthology relationships at i. We will return to the interpretation of θ
shortly.

We can now construct expressions for our orthology estimates
at a position, given the information at one or more other neighbor-
ing positions. Recall that L

i
contains the likelihood of the data at

i for each possible orthology state. We now define L
i�1jD0...Di�1, the

likelihood of each possible orthology state at i� 1, given the data at
pillars 0. . .i � 1. We can write a recurrence equation for L

ijD0...Di

using L
i�1jD0...Di�1, L

i
, and the transition probability matrix Θi�1,i:

�L
ijD0...Di ¼ �L

i � Θi�1,i � �Li�1jD0...Di�1

�
ð2Þ
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i

�
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where “
J

” represents an element-wise vector product. When we
define the base-case L

0jD0 ¼ L
0
, we can apply this equation sequen-

tially to the m pillars, with the total likelihood of the data L being

L ¼
X2n�1

l¼0
L
m�1jD0...Dm�1

l ð3Þ
In other words, the total likelihood is just the sum of the

likelihoods of ending up in each of the 2n orthology states at the
last pillar (pillar m � 1). Using eq. 3, we optimize the model
parameters by maximum likelihood using standard numerical
approaches [33]. POInT can either perform this optimization for
a user-supplied phylogenetic topology or search across all possible
rooted topologies and return the one with the highest likelihood.

To obtain the orthology inferences themselves, as well as asso-
ciated confidence estimates, we need to add what is known in the
HMM literature as a posterior decoding step. This step is analogous
to obtaining the odds ratios for the disease allele placement in the
Lander and Green algorithm; a similar approach has been applied to
estimating correlated rate variation across sites in a sequence align-
ment [34]. For a given pillar i, we compute, as before L

i�1jD0...Di�1
:

We then compute the analogous probabilities working from the last
pillar m � 1 down to pillar i + 1:L

iþ1jDiþ1...Dm�1
Conceptually, this

step corresponds to applying eq. 2 to the reversed sequence of
pillars. We then obtain L

ijD
, a vector of conditional likelihoods for

all of the 2n orthology states at pillar i, given all of the observed
gene presence/absence data, denoted asD:

jD ¼ �L
i � Θi�1,i � �Li�1jD0...Di�1

� �� �
� Θi,iþ1 � �Liþ1jDiþ1...Dm�1

�
ð4Þ

The elements of L
ijD

sum to L, and the conditional probability
Pj of any given state j is just the jth element of that vector divided
by that total likelihood L:

P j ¼
L
ijD
j

L
ð5Þ

These conditional probabilities give us estimates of our confi-
dence in a given orthology inference. In Fig. 3, the values at the top
are such conditional probabilities. Because the yeast WGD is not
marked by biased fractionation, the model is completely symmetri-
cal, with states C1 and C2 and S1 and S2 being equivalent (Fig. 2).
As a result, the orthology relationships shown have the same con-
ditional probabilities as those where the top and bottom tracks are
swapped, which accounts for the fact that Pj has values near to ½
rather than to 1 for these examples.
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4.1 Comments on the

POInT Computation

In the next section, I will give some examples that I hope illustrate
the value of POInT for analyzing polyploidies. But I think it is first
appropriate to note a few weaknesses.

First, POInT is only as accurate as the presence/absence data
used as input. We have described a pipeline for producing these
pillars for cases when manual sets like those of YGOB are not
available [32, 35]. Briefly, each polyploid genome is searched
against an outgroup genome lacking the event using BLAST. The
resulting homologs are then placed in DCS blocks relative to that
outgroup using simulated annealing [36]. The DCS blocks for
individual genomes are merged, and a global pillar order that
minimizes synteny breaks is inferred and used by POInT. This
approach works especially well for more recent polyploidies with
relatively few rearrangements observed between the genomes. We
have shown that even for the ancient teleost genome duplication, it
is adequate [35] but have found it to be problematic for the very
old vertebrate 2R events (data not shown).

A second concern is with the θ parameter from eq. 1. Unlike
the model parameters in Fig. 2, θ is an error or nuisance parameter
in the model without a biological interpretation. Hence, unlike the
Lander and Green algorithm, where the corresponding parameter
is a recombination rate, θ only indicates how often our model
“changes its mind” about the orthology assignments from pillar
to pillar. Fortunately, in practice, θ tends to be quite small: In a
recent analysis of seven tetraploidies, we found 0.002 � θ � 0.009,
meaning that the inferred orthology was almost invariably main-
tained between adjacent pillars. It is hence a useful diagnostic tool:
If a large (>0.1) value of θ is inferred, the resulting orthology
inferences are of low quality.

4.2 Example Uses of

POInT

Testing for a shared polyploidy. One of the first uses we made of
POInT was testing whether the polyploidies found in V. polyspora
and S. cerevisiae were in fact a single shared event. In our modeling
framework, two independent polyploidies can be easily represented
as a phylogeny like that in Fig. 3 where the root branch has zero
length. In that case, the clades on either side of that root have no
common losses from their respective polyploidies. The question of
how many apparently shared losses we would infer in the case of
independent polyploidies can be addressed with simulation: giving
POInT a phylogeny with a zero-length root and set of model
parameters and asking it to simulate new polyploid genomes
under that model. For each simulation, we ask how much smaller
the likelihood seen under a model with a forced zero length root
(an independent polyploidy model) is than is the likelihood of a
model where the root length can take on any value (e.g., a model of
a shared polyploidy; [37]). We then ask whether the difference in
these two likelihoods for the real data is much greater than the
differences seen among the simulations. A large improvement in



species of parasitic nematodes also descend from a common triploid

likelihood for the shared polyploidy model relative to the indepen-
dent one when analyzing the real data as compared to analyzing the
simulations suggests significant evidence of a shared polyploidy
between these lineages, and was indeed what we found [37]. We
conducted an identical analysis more recently to show that three
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ancestor [38].

Confirming the existence of biased fractionation. As with the
question of the shared S. cerevisiae/V. polyspora genome duplica-
tion, inferences of biased fractionation have the potential to be
influenced by the methods used to detect them. Hence, while
biased fractionation is inferred when heuristic approaches for
orthology inference are used on polyploid genomes [39, 40],
there remained the slight concern that such methods, in seeking
to maximize genomic similarity, might infer a bias in gene losses
where none exists. Our models incorporate bias in fractionation
with model parameters such as ε in Fig. 2a. Using likelihood ratio
tests [41], we initially showed [32] that models with biased frac-
tionation (ε < 1.0) were preferred over those without it (ε ¼ 1.0).
However, one might still argue that the maximization approach
inherent in making these parameter estimates was giving rise to
spurious inferences of bias. In the end, I again adopted a simulation
approach, creating simulated polyploidies without biased fraction-
ation and showing that analyzing those simulated genomes using
models that included biased fractionation did not give estimates of
the ε parameter that were anything like as small (e.g., high bias) as
was observed for real data [35]. We can therefore be quite certain
that biased fractionation is a common pattern in paleopolyploid
genomes [32, 35, 38, 42].

Modeling hexaploidy. We recently completed an analysis of the
hexaploidy shared by the Brassica crops B. oleracea (broccoli, cab-
bage, cauliflower) and B. rapa (kale) and their relatives [42]. The 3:
1 pattern of conserved synteny between these genomes and that of
Arabidopsis is clear [11], but there is not an obvious single muta-
tional step that could produce such hexaploids. Instead, it is
believed that they were formed when two diploids hybridized to
form an allotetraploid, which subsequently underwent an allopoly-
ploid hybridization with another diploid to form an allohexaploid
[43]. The extant genomes show signs of strong biased fraction-
ation, such that one of the three subgenomes shows many more
surviving genes (the LF, or “least fractionated” subgenome) than
the other two (MF1 and MF2, “more” and “most” fractionated,
respectively). As a result, it was argued that the progenitor of the LF
genome was most likely the “last arriving,” i.e., the diploid progen-
itor contributing to the second allopolyploidization. We developed
a new type of model for a two-step hexaploidy (Fig. 2b) that



includes the transition from a genome duplication (state D2,3) to a
triplication (state T) prior to gene losses and speciation events after
the second allopolyploidy [42]. If the two allopolyploidies were
separated in time, not all of the initially duplicated genes would
have survived in duplicate to become triplicated. Denoting LF as
subgenome 1, we can model this effect with transitions from state
D2,3 to D1,2 (loss of a duplicate from MF2 prior to LF arriving) or
from D2,3 to D1,3 (loss from MF1). Because all of these transitions
occurred prior to the first speciation in our data, we cannot estimate
whether any given pillar underwent a loss prior to the arrival of
LF. However, treating the pillars as a whole allows us to estimate
the frequency of such losses, as well as to compare our inferences to
models where the LF subgenome was one of the original progeni-
tors, rather than the last arriving. The POInT framework gives us
strong confidence both in there having been a number of gene
losses prior to the arrival of LF and that LF was indeed the last
arriving subgenome, confirming the two-step model for this event.
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5 Future Directions and Concluding Remarks

POInT is a complex and slightly idiosyncratic program, and run-
ning a full analysis with it is unnecessary for most users. Instead, we
have made our inferences from POInT publicly available in a
graphical format with POInTbrowse (wgd.statgen.ncsu.edu). Here,
users can first visually explore the DCS blocks and orthology infer-
ences and then download the associated coding regions and
inferred gene trees, as well as gain access to larger datasets from
our analyses. Our main future goal for this portal is to add a “batch
download” feature that will allow users to request sets of pillars that
meet specified criteria, such as orthology confidence and number of
surviving homoeologs. The synteny visualizations can also be
downloaded in publication quality: such was the origin of Fig. 3.

We also plan to further extend POInT to handle nested poly-
ploidies, using the framework of Fig. 2b. While computationally
expensive, such models could allow the analysis of, for instance, the
recent soybean polyploidy simultaneously with the more ancient
shared legume WGD. With such an addition, as well as a few other
polyploidies we have not yet considered, such as that in the Sola-
naceae [44], we will be able to provide something close to a
comprehensive reference for paleopolyploidies in the sequenced
genomes. From there, questions such as the degree of convergent
evolution inherent to polyploidy, the sources of biases in duplicate
losses and the timing of losses after hybridization can be addressed
in detail using POInT’s inferences as a starting point (pun
intended).
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