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POInT: A Tool for Modeling Ancient Polyploidies Using
Multiple Polyploid Genomes
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Abstract

Ancient polyploidy events are widely distributed across the evolutionary history of eukaryotes. Here, we
describe a likelihood-based tool, POInT (the Polyploidy Orthology Inference Tool), for modeling ancient
whole genome duplications and triplications, assigning homoeologous genes to subgenomes and inferring
gene losses across different parental subgenomes after polyploidy.
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1 Introduction

About 14 years ago, we described a model-based approach to
understanding the resolution of polyploidy events through dupli-
cate gene loss [1, 2]. This tool, POInT (the Polyploidy Orthology
Inference Tool), uses synteny data to statistically associate adjacent
genes in each genome, allowing for the combination of loss infor-
mation from multiple genes and genomes to “phase” regions of
each polyploid genome relative to the others, identifying ortholo-
gous and paralogous chromosome regions. This phasing is per-
formed probabilistically using a hidden Markov model (HMM; see
[3]) that resembles the Lander-Green approach for constructing
linkage maps from ordered genetic markers and a pedigree [4]. If
we define each of the homoeologous genes created by the poly-
ploidy as a “pillar” (see Fig. 1), we can see that, at each such pillar,
POInT calculates the probability of the observed gene presence—
absence data conditional upon each of the 2” possible orthology
relationships and also conditional upon a phylogenetic tree and a
model for gene loss (The approach is conceptually identical for
hexaploidies and octoploidies, but there are more possible orthol-
ogy relationships to be tested). The HMM transition probability 6;
corresponds to the probability that orthology changes between
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Fig. 1 Double conserved synteny blocks shared by Brachypodium distachyon, Oropetium thomaeum, Oryza
sativa, Setaria italica, and Sorghum bicolor after the grass p whole genome duplication [5]. Pink genes are
retained duplicates after the WGD, blue and green genes returned to single-copy and are from two different
parental subgenomes. Gene synteny is indicated by the horizontal lines, and a gap represents gene loss after
polyploidy. Posterior probabilities are shown on top of each pillar

syntenic neighbors at pillars j — 1 and 7, with the 6 parameter is best
thought of as an “error” term accounting for situations where the
orthology assignments at the beginning of a synteny block difter
from those at the end. This framework is how we are able to allow
the presence—absence data to inform orthology relationships at
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neighboring pillars. Pillars that are separated by synteny breaks are
independent in their orthology relationships (i.e., 8; = 1/2). The
model parameters and phylogenetic branch lengths are then fit to
the pillar data using maximum likelihood and standard numerical
optimization [6].

The power of this modeling framework is considerable. It
produces probabilistic estimates of the orthology relationships
between all of the homoeologous genes in the genome analyzed.
These estimates can be used for problems such as identitying valid
phylogenetic markers from polyploid genomes. We ourselves have
used them as sequence-independent markers of locus history for
the detection and analysis of gene conversions [7-9], as well as to
link gene loss and preservation patterns after polyploidy to molec-
ular functions [5, 10, 11] and to explore the role a genome ploidy
increase played in the formation of a clade of parasitic nematodes
[12]. POInT can also be used as a simulation engine: we have used
it to confirm that polyploidies are indeed shared events between a
number of genomes [2], test hypotheses about biases in gene loss
[11] and to infer the zype of polyploidy event present in certain
genomes [12].

Our original POInT analyses were predicated on sets of homo-
eologous genes and an inferred ancestral genome order that the
Wolte lab developed for the yeast WGD as part of the Yeast Gene
Order  Browser  (YGOB,  http://ygob.ucd.ie)  project
[13, 14]. Recently, we have expanded POInT and developed a
new software pipeline that allows us to examine arbitrary polyploidy
events, so long as we have at least two genome sequences from
species sharing the event as well as an outgroup genome lacking it
[5]. This pipeline operates following a clear analogy to the process
of creating datasets for phylogenetic analyses. In particular, we have
an “alignment” step followed by the phylogenetic modeling step
just sketched. We will generally describe running this pipeline
under the assumption of a genome duplication (tetraploidy) for
simplicity, using terms such as “duplicated regions.” However, our
approach is fully general, and we have also successfully applied it to
hexaploidies and octoploidies.

The full suite of POInT tools is freely available from either our
website (http://conantlab.org/POInT/POInT.html) or GitHub
(https: //github.com/gconant0/POInT). The majority of POInT
is written in standard C++ (with the exception of one perl script)
and has modest dependencies: the lapack linear algebra libraries for
the likelihood computation [15], the GNU plotutils package
(optional and used for producing visualizations), a random number
generator (https://people.sc.fsu.edu/~jburkardt/f77_src/ranlib/
ranlib.html), the OpenMP shared memory parallel library [16] and
the Bioperl package, which is used only for inferring the initial set of
gene orders in the various genomes [ 17]. The open-source code for
the random number generator and the required lapack subroutines
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are included in the distribution for convenience: on systems with
lapack and blas preinstalled, the installed versions are used in pref-
erence to the copies in the distribution.

2 POInT Dataset Assembly/Synteny Block Inference

2.1 Step 1: Homology
Inference

This “alignment” step seeks to assemble blocks of N-fold conserved
synteny (NCS) produced by the various types of polyploidy (e.g.,
N = 2 for a tetraploidy, N = 3 for a hexaploidy and N = 4 for
octoploidy). These blocks represent the products of the polyploidy
and contain both surviving duplicated loci as well as regions where
one or more of the homoeologs (“duplicates” from polyploidy)
have been lost (Fig. 1). The inference process has three substeps:
(1) homology inference, (2) inference of NCS blocks between a
single polyploid genome and the nonpolyploid outgroup, and
(3) the merging of NCS blocks from multiple polyploid genomes
and the inference of an ancestral block order. The data required for
step 1 are as follows.

1. FASTA files with the coding regions and translations of all
protein-coding genes in each polyploid genome and the non-
polyploid outgroup.

2. GFF files describing the relative contig or chromosome posi-
tion of the coding regions/genes in those FASTA files for all of
the genomes in question.

Our pipeline requires an outgroup or reference genome that is a
relatively close relative of the polyploid genomes but which lacks
the polyploidy. It is conceptually convenient to think of it as the
“ancestral” prepolyploid genome, although that is not technically
accurate. This homology search could be conducted in several ways,
with a simple BLAST search [18] being perhaps the most obvious.
Indeed, our first analysis [5] used a BLAST-like approach with low
sensitivity but high computational efficiency that we developed
from the SeqAn library [19]. More recently, we have found that
GenomeHistory [20], a tool we developed about 20 years ago,
while slow, gives good coverage of the genomes, including pairwise
estimates of synonymous and nonsynonymous divergence (K and
K,), which are used in the next steps of the analysis. We note that
the homology search only compares each polyploid genome with
the nonpolyploid outgroup and with itself: we do not directly
compare the polyploid genomes. When the homology search is
complete, we store several pieces of information: (a) any pair of
genes from the polyploid genome and the outgroup that pass
homolog cutoffs in terms of percent amino acid identity of the
pairwise alignment [21] of their two sequences, (b) pairs of genes
both either from the polyploid or the outgroup genome that pass



2.2 Step 2: NCS
“Scaffolding”
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similar filters and are hence potential tandem duplicates, and
(¢) The relative position of each of the genes in either “a” or “b”
in their respective genomes. These data take the form of an ordered
list of genes on contigs or chromosomes, omitting any genes with

no homologs in “a” or “b.”

The next pipeline step uses the putatively single-copy genes from
the nonpolyploid genome to infer the set of duplicated (or more)
regions created by the polyploidy in each polyploid genome. Were
all of the duplicate genes created by the polyploidy still extant, the
identification of such regions would be trivial. In the face of dupli-
cate loss, it becomes more complex.

We frame this problem as first defining a set A of # NCS blocks,
each pillar A; of which consists of one gene from the nonpolyploid
outgroup (A; € A|l < i < n). Each A, has elements A,(py) ...
AL pr), representing the £ (= 2 for a tetraploidy) homologous
genes created by the polyploidy. Associated to A; are also all of
the genes in the polyploid genome homologous to the nonpoly-
ploid genome gene for that pillar {4, ... 4,}. At most % of these
homologs can be assigned to A py) ... A pr). Finally, we define
O(A4; ... A,) to be the order of the pillars used for our analysis.
Hence, Ap(;) represents the sth pillar in this ordering. For a given
Ao p)|l < I < k, define Ao+ j(pi) such that j = min(x;
i+ 1 < x < m)where Ao 4 (1) # 0. In other words, 7 + jis the
next pillar after 7in O(4; ... A4,) with an assigned gene for parental
subgenome /. From this framework, we can create a scoring func-
tion s for comparing different combinations of homolog assign-
ments and pillar orders:

k

ZZ

=1 I=1

pl ) and Ao(i) (171) are neighbors

(1)

otherw1se

This equation indicates that s is the sum of the number of
positions in O(A; ... A,) where the genes in each pillar are the
genomic neighbors of the genes in the next nonempty position.
One might wonder why the pillar order is estimated rather than
simply being taken from the outgroup. However, in many cases, the
outgroups used are rather distant relatives of the true polyploid
progenitors and using these genome orders, even were the
sequences in question perfectly assembled, would introduce not
only all the postpolyploidy rearrangements seen in the polyploid
genomes but also all those that occurred in the outgroup.

Equation 1 only allows us to score a particular combination of
homeolog assignment and order (e.g., one point in a large state
space). Unfortunately, the number of possible such points is enor-
mous: there are #! orders alone, without including the homeolog
assignments. We therefore use simulated annealing [22, 23] to
search for optimal values of 5. Simulated annealing is a common
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2.3 Step 3: Pillar
Merging and Global
Order Inference

optimization approach that proposes small random changes to a
current point in the state space: after each such move s is recom-
puted. The move is then accepted if either it improves the score or if
the decrease in score is below a threshold that is tuned to decrease
over the annealing run. This part of the analysis requires a certain
degree of “art,” as it is generally necessary to make increasingly
long runs of the annealing algorithm until longer runs no longer
produce meaningfully higher values of s.

From a practical perspective, this step is performed by the tool
POInT_genome_scaffold in the POInT distribution. This program
first collapses tandem duplicates in the outgroup and polyploid
genomes (group “b” above). It also allows for a K or K, filter on
the homologs, allowing the user to remove distant homologs. It is
similarly possible to take only the top m homologs (in terms of
smallest K or K,) for the analysis, a feature that is useful in gen-
omes with high degrees of nested polyploidy. The output is a
POInT-specific format that identifies the outgroup gene, the
(up to) khomeologs and whether or not they have synteny support
and in which direction.

In the POINT distribution, we provide a script (POInT_merge.pl)
that combines the optimal runs of POInT_genome_scaffold from
across multiple genomes into a common set of pillars with at least
one surviving homeolog across all of these genomes. This require-
ment for the presence of at least one gene in every genome limits
the size of resulting datasets but is necessary because POInT cannot
yet model the complete loss of an ancestral gene. The merge
program allows the user to include pillars with different levels of
synteny support, but we invariably only include pillars where every
gene present is in synteny with at least one other (the default
behavior). The genes from the outgroup genome are used as
indices to allow the combination of genes from the different poly-
ploid genomes.

POInT_merge.pl produces a set of pillars order by their
genome position in the outgroup genome, since the O(4; ... 4,)
are different for each polyploid genome. This order will generally
poor; it might, for example, include a large number of synteny
breaks. Hence, the final step of the assembly pipeline is to run
POInT _ances_order, which again uses simulated annealing to
infer a pillar order with as few synteny breaks as possible. It does
this by proposing different pillar orders and counting the resulting
synteny breaks. In this case, the raw number of synteny breaks itself
is used as the optimality function, and we find that a number of
short annealing runs with POInT _ances_order produces orders
with acceptable “tracking.”

We provide a number of options with the POInT_ances_order
program to provide adequate performance for polyploidies of dif-
ferent ages. In general, older polyploidies show more
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rearrangements, meaning that the ancestral order inference is more
difficult. Hence, we offer a “preoptimization” step that uses a
greedy algorithm to initially order the data: this subroutine works
best when the initial order is very poor (has many breaks). Second,
we allow the user to control the quality of the “fixed blocks” in the
inferences. Obviously, if two pillars are completely connected (show
no synteny breaks between them), it is unproductive to rearrange
within this “block,” since the number of synteny breaks cannot
improve. In fact, we know that these pillars must appear in these
positions in the optimal order. Hence, POInT_ances_order per-
forms rearrangements on these inferred blocks rather than the
individual pillars: especially for datasets with few synteny breaks,
this approach dramatically decreases the search space size.

When the dataset has a larger number of synteny breaks, this
block approach will not reduce the search space as much: in those
cases, we allow the user to specify a block cutoft #, corresponding
to a number of synteny breaks tolerated within a block. For
instance, by using a setting of -m:3 in POInT_ances_order, pairs
(or more) of pillars with 3 or fewer synteny breaks will be treated as
a single block and no rearrangements attempted within them. By
starting with relatively larger values of this parameter, one can
perform first coarse and then fine optimization (smaller ) and
significantly reduce the search time for a reasonable ancestral order.

3 Modeling Polyploid Genome Evolution with POInT

Once these steps are complete, modeling of polyploidy events is
possible. POInT itself fits Markov models of postpolyploidy gene
loss to the pillars inferred above [2, 10]. In the current version,
these models can be specified by the user in file format illustrated
with the example in Fig. 2. Transition probabilities for these models
are first computed by exponentiating the instantaneous rate matrix
they define [24], and they are then fit to the pillar data using
numerical optimization [6]. The models have states corresponding
to single-copy, duplicated, triplicated, and quadruplicated genes, as
well as the potential for variations of these states, for example, fixed
duplicates that will remain in the duplicated state permanently.
Figure 2 gives two example models we have developed for
POInT: more models can be downloaded from our website
(http: //conantlab.org/software.html).

The running time of a POInT optimization can be significant:
the algorithmic complexity of the algorithm is O(2”) for a tetra-
ploidy (where # is the number of genomes) and greater for higher-
level polyploidies. We have therefore implemented POInT as a
parallel program using the OpenMP shared memory paradigm
[16]. An analysis of ~4100 pillars across 11 taxa sharing a tetra-
ploidy hence takes on the order of a few weeks on an Intel Phi
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A)
WGD _bias fix
Hierarchical 2
#NumStates
4
#NumParams
3
#StateNames
Dupl 1 1
DuplFix 1 1
Copyl 1 0
Copy2 0 1
#ParameterDescripts
FixRate 0 _TO INF 0.1673
SwitchProb ZERO_TO ONE 0.0085

Copy2Bias ZERO_TO ONE
#Matrix <§\\\\\\“~\\\g
Null FixRate Default Copy2Bias
Zero Null Zero Zero
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Fig. 2 Example model files required by POInT. (a) Description of a model file and estimated model parameters.
(b) Example model of a WGD, U stands for an undifferentiated duplicated state, Fis a fixed duplicate, and S;
and S, represent single-copy states for the two parental subgenomes respectively. Here y is the duplication
retention parameter and ¢ is the biased fractionation parameter, while ay, ae, and a are transition rates
between states. (¢) Example model for a WGT. This model shows seven possible states (triplicated, duplicated,
or single-copy states) after whole genome triplication and the transition rates between these states

coprocessor [25] and a roughly equivalent amount of time on
16 cores of modern high-end Intel Pentium processors.

There are a number of different ways to use POInT, and so we
provide a few examples as illustrations.

Example 1 Testing the presence of duplicate fixation In the sim-
plest use of POInT, we have a set of loci and a known phylogeny
and wish to test the fit of different models of homeolog loss to these
data. In this case, we would simply run POInT twice with a known
input tree (provided with the -t:<Nexus treefile> option) and two
different models, for instance a null model without duplicate fixa-
tion and an alternative with it. At the end of each run, a new tree file
inputtreefile.our is created with the model parameters and the
resulting log-likelihood. Since duplicate fixation is controlled by a
single parameter (y in Fig. 2), twice the difference in log-likelihood
between the two models is distributed chi-square with 1 degree of
freedom [26], allowing us to infer the significance (or lack thereof)
of the improvement in fit from adding this parameter.
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Example 2 Inferving the phylogenetic velationships between poly-
ploid taxa If no tree is provided to POInT, it will compute the
likelihood of all possible topologies for the taxa provided. Obvi-
ously, this computation could be very slow for large numbers
of taxa: in our experience, it is only practical for datasets of five or
fewer taxa in the context of a WGD, and three or fewer for a WGT.
The topology with the highest log-likelihood is saved as a new
tree file.

Example 3 Extracting orvthologous genes from polyploid
genomes POINnT probabilistically computes all possible sets of
orthology relationships between all of the loci in all of the polyploid
genomes (whether or not a gene is actually present at that position
in that genome). As such, an inference of the optimal orthology
relationship can be made by computing the likelihood of a particu-
lar assignment relative to all of the possible assignments. Using the
-p:<filename> option in POInT will result in the program saving
the probability of every possible orthology relationship for every
locus to that file. The header line gives the identity of all of these
assignments, which can then be parsed manually or by other
software.

Example 4 Testing the hypothesis of shaved vevses independent
polyploidies When studying the yeast WGD, the question arose if
the polyploidy observed in the genome of V. polysporus was the same
event as that seen in 8. cerevisine [2]. In the POInT models,
independent polyploidies are equivalent to having the shared root
branch of the various taxa set to zero length (V. polysporus is the
most distant relative of S. cerevisiae in this dataset). To test this
hypothesis, we fit the pillar data in POInT while forcing the shared
root branch to zero length, which is done by providing a tree file
with a zero length root branch and using the argument -zero-
lengthfixed. We then run POInT again without this constraint.
We next use the optimized tree with the forced zero-length root
to simulate new genome duplications using the POInT simulation
engine POInT_simulate. This program produces simulated poly-
ploidies under an assumed model and tree topology. One can then
use the main POInT code to analyze these simulations both under
the forced zero-length assumption and omitting this requirement.
The result is a distribution of differences in In-likelihood for the
simulated datasets that can be compared to that for the real dataset
to assess if the root branch for the real dataset is inferred to be
significantly nonzero, implying a shared polyploidy for the gen-
omes in question.

Example 5 Evaluating the gene loss pattevn after polyploidy -
POInT can be used to statistically test for biased fractionation,
that is, the preferential gene retention and unbalanced gene loss
across different parental subgenomes after polyploidy. To
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implement this test, POInT will be run twice, first using a null
model with the biased fractionation parameter ¢ = 1 (Fig. 2). In this
null model, the transition rates from the duplication state to each
single-copy state are the same, modeling a scenario where gene loss
in different subgenomes is equally likely. Then, in the alternative
model, ¢ is allowed to fall between 0 and 1, introducing biased
fractionation. The likelihood estimations from the two models can
again be compared using a likelihood ratio test.

4 Conclusions

POInT and its associated helper programs are an extensible frame-
work for studying the evolution of polyploid genomes. The tools
are flexible in the types of polyploidy they can model and allow the
user to define new Markov models of gene loss as needed. The
software itself'is freely available without license restrictions and runs
on a variety of parallel and serial computing platforms.
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